Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 111(24): 4071-4085.e6, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37816349

RESUMO

The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit in vivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.


Assuntos
Navegação Espacial , Processamento Espacial , Camundongos , Animais , Objetivos , Hipocampo , Córtex Entorrinal , Cognição
2.
J Lipid Res ; 64(6): 100354, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958720

RESUMO

Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.


Assuntos
Apolipoproteína E4 , Ácidos Docosa-Hexaenoicos , Animais , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Dieta , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Córtex Entorrinal/metabolismo , Ácidos Graxos Insaturados
3.
Neuron ; 111(6): 888-902.e8, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608692

RESUMO

The adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps.


Assuntos
Hipocampo , Neurônios , Animais , Camundongos , Hipocampo/fisiologia , Neurônios/fisiologia , Tálamo , Córtex Entorrinal/fisiologia , Região CA1 Hipocampal/fisiologia
4.
Neurosci Bull ; 38(9): 1041-1056, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705785

RESUMO

Functional changes in synaptic transmission from the lateral entorhinal cortex to the dentate gyrus (LEC-DG) are considered responsible for the chronification of pain. However, the underlying alterations in fan cells, which are the predominant neurons in the LEC that project to the DG, remain elusive. Here, we investigated possible mechanisms using a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. We found a substantial increase in hyperpolarization-activated/cyclic nucleotide-gated currents (Ih), which led to the hyperexcitability of LEC fan cells of CFA slices. This phenomenon was attenuated in CFA slices by activating dopamine D2, but not D1, receptors. Chemogenetic activation of the ventral tegmental area -LEC projection had a D2 receptor-dependent analgesic effect. Intra-LEC microinjection of a D2 receptor agonist also suppressed CFA-induced behavioral hypersensitivity, and this effect was attenuated by pre-activation of the Ih. Our findings suggest that down-regulating the excitability of LEC fan cells through activation of the dopamine D2 receptor may be a strategy for treating chronic inflammatory pain.


Assuntos
Dor Crônica , Córtex Entorrinal , Animais , Córtex Entorrinal/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2
6.
Neurobiol Learn Mem ; 188: 107586, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35045320

RESUMO

The interactions between the medial prefrontal cortex (mPFC) and the hippocampus (HC) are critical for memory and decision making and have been specifically implicated in several neurological disorders including schizophrenia, epilepsy, frontotemporal dementia, and Alzheimer's disease. The ventral midline thalamus (vmThal), and lateral entorhinal cortex and perirhinal cortex (LEC/PER) constitute major communication pathways that facilitate mPFC-HC interactions in memory. Although vmThal and LEC/PER circuits have been delineated separately we sought to determine whether these two regions share cell-specific inputs that could influence both routes simultaneously. To do this we used a dual fluorescent retrograde tracing approach using cholera toxin subunit-B (CTB-488 and CTB-594) with injections targeting vmThal and the LEC/PER in rats. Retrograde cell body labeling was examined in key regions of interest within the mPFC-HC system including: (1) mPFC, specifically anterior cingulate cortex (ACC), dorsal and ventral prelimbic cortex (dPL, vPL), and infralimbic cortex (IL); (2) medial and lateral septum (MS, LS); (3) subiculum (Sub) along the dorsal-ventral and proximal-distal axes; and (4) LEC and medial entorhinal cortex (MEC). Results showed that dual vmThal-LEC/PER-projecting cell populations are found in MS, vSub, and the shallow layers II/III of LEC and MEC. We did not find any dual projecting cells in mPFC or in the cornu ammonis (CA) subfields of the HC. Thus, mPFC and HC activity is sent to vmThal and LEC/PER via non-overlapping projection cell populations. Importantly, the dual projecting cell populations in MS, vSub, and EC are in a unique position to simultaneously influence both cortical and thalamic mPFC-HC pathways critical to memory. SIGNIFICANCE STATEMENT: The interactions between mPFC and HC are critical for learning and memory, and dysfunction within this circuit is implicated in various neurodegenerative and psychiatric diseases. mPFC-HC interactions are mediated through multiple communication pathways including a thalamic hub through the vmThal and a cortical hub through lateral entorhinal cortex and perirhinal cortex. Our data highlight newly identified dual projecting cell populations in the septum, Sub, and EC of the rat brain. These dual projecting cells may have the ability to modify the information flow within the mPFC-HC circuit through synchronous activity, and thus offer new cell-specific circuit targets for basic and translational studies in memory.


Assuntos
Comunicação , Hipocampo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Córtex Entorrinal , Feminino , Masculino , Ratos
7.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920138

RESUMO

Alzheimer's disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain's entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical-protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Genes de Troca/genética , Inflamação/genética , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Córtex Entorrinal/patologia , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , PPAR gama/genética , Fosfolipase D/genética , Placa Amiloide , Transdução de Sinais/genética , Software , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Fator de Transcrição YY1/genética
8.
Neural Plast ; 2020: 8836173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908486

RESUMO

Microglia are the primary cells that exert immune function in the central nervous system, and accumulating evidence suggests that microglia act as critical players in the initiation of neurodegenerative disorders, such as Alzheimer's disease (AD). Microglia seemingly demonstrate two contradictory phenotypes in response to different microenvironmental cues, the M1 phenotype and the M2 phenotype, which are detrimental and beneficial to pathogenesis, respectively. Inhibiting the M1 phenotype with simultaneous promoting the M2 phenotype has been suggested as a potential therapeutic approach for cure AD. In this study, we demonstrated that electroacupuncture at the Shenting and Baihui acupoints for 16 weeks could improve learning and memory in the Morris water maze test and reduce amyloid ß-protein in the parietal association cortex and entorhinal cortex in mice with mild and moderate AD. Besides, electroacupuncture at the Shenting and Baihui acupoints not only suppressed M1 marker (iNOS/IL-1ß) expression but also increased the M2 marker (CD206/Arg1) expression in those regions. We propose that electroacupuncture at the Shenting and Baihui acupoints could regulate microglial polarization and decrease Aß plaques to improve learning and memory in mild AD mice.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Polaridade Celular , Eletroacupuntura , Córtex Entorrinal/fisiologia , Aprendizagem em Labirinto , Microglia/metabolismo , Lobo Parietal/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
J Integr Neurosci ; 19(2): 217-227, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32706186

RESUMO

Centella asiatica is notable for its wide range of biological activities beneficial to human health, particularly its cognitive enhancement and neuroprotective effects. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are ionotropic glutamate receptors mediating fast excitatory neurotransmission essential in long-term potentiation widely thought to be the cellular mechanism of learning and memory. The method of whole-cell patch-clamp was used to study the effect of the acute application of Centella asiatica extract on the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated spontaneous excitatory postsynaptic currents in the entorhinal cortex of rat brain slices. The respective low dose of test compounds significantly increased the amplitude of spontaneous excitatory postsynaptic currents while having no significant effects on the frequency. The findings suggested that Centella asiatica extract increased the response of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors at the postsynaptic level, revealing the potential role of Centella asiatica in modulating the glutamatergic responses in the entorhinal cortex of rat brain slices to produce cognitive enhancement effects.


Assuntos
Córtex Entorrinal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Nootrópicos/farmacologia , Receptores de AMPA/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Centella , Nootrópicos/administração & dosagem , Técnicas de Patch-Clamp , Extratos Vegetais , Ratos , Triterpenos/administração & dosagem
10.
Curr Opin Neurobiol ; 64: 32-40, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32088661

RESUMO

Sensory systems show hierarchical computation, starting from primary sensory receptors, with information transformed into multimodal representations as they move through subcortical and cortical brain regions. Here, we discuss recent evidence illustrating that the signaling of direction within the mammalian brain is likewise transformed and multiplexed as it progresses from subcortical regions that contain tightly direction-coupled neurons through thalamus to regions that support navigation, such as the subiculum, entorhinal cortex and hippocampus. Such transformations in the directional signal as it ascends from thalamus to higher-order regions may allow the directional system to support a repertoire of behaviors that go beyond an animal orienting in space.


Assuntos
Córtex Entorrinal , Hipocampo , Animais , Encéfalo , Neurônios , Tálamo
11.
Neurosci Biobehav Rev ; 107: 775-794, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526818

RESUMO

The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.


Assuntos
Etanol/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Navegação Espacial/efeitos dos fármacos , Animais , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/fisiopatologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia
12.
Biomed Pharmacother ; 110: 168-180, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30469081

RESUMO

Centella asiatica (CA) is a widely used traditional herb, notably for its cognitive enhancing effect and potential to increase synaptogenesis. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory neurotransmission with key roles in long-term potentiation which is believed to be the cellular mechanism of learning and memory. Improved learning and memory can be an indication to the surface expression level of these receptors. Our previous study demonstrated that administration of CA extract improved learning and memory and enhanced expression of AMPAR GluA1 subunit while exerting no significant effects on GABAA receptors of the hippocampus in rats. Hence, to further elucidate the effects of CA, this study investigated the effects of CA extract in recognition memory and spatial memory, and its effects on AMPAR GluA1 and GluA2 subunit and NMDAR GluN2 A and GluN2B subunit expression in the entorhinal cortex (EC) and hippocampal subfields CA1 and CA3. The animals were administered with saline, 100 mg/kg, 300 mg/kg, and 600 mg/kg of CA extract through oral gavage for 14 days, followed by behavioural analysis through Open Field Test (OFT), Novel Object Recognition Task (NORT), and Morris Water Maze (MWM) and lastly morphological and immunohistochemical analysis of the surface expression of AMPAR and NMDAR subunits were performed. The results showed that 14 days of administration of 600 mg/kg of CA extract significantly improved memory assessed through NORT while 300 mg/kg of CA extract significantly improved memory of the animals assessed through MWM. Immunohistochemical analysis revealed differential modulation effects on the expressions of receptor subunits across CA1, CA3 and EC. The CA extract at the highest dose (600 mg/kg) significantly enhanced the expression of AMPAR subunit GluA1 and GluA2 in CA1, CA3 and EC, and NMDAR subunit GluN2B in CA1 and CA3 compared to control. At 300 mg/kg, CA significantly increased expression of AMPAR GluA1 in CA1 and EC, and GluA2 in CA1, CA3 and EC while 100 mg/kg of CA significantly increased expression of only AMPAR subunit GluA2 in CA3 and EC. Expression of NMDAR subunit GluN2 A was significantly reduced in the CA3 (at 100, 300, and 600 mg/kg) while no significant changes of subunit expression was observed in CA1 and EC compared to control. The results suggest that the enhanced learning and memory observed in animals administered with CA was mainly mediated through increased expression of AMPAR GluA1 and GluA2 subunits and differential expression of NMDAR GluN2 A and GluN2B subunits in the hippocampal subfields and EC. With these findings, the study revealed a new aspect of cognitive enhancing effect of CA and its therapeutic potentials through modulating receptor subunit expression.


Assuntos
Centella , Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Extratos Vegetais/farmacologia , Receptores de AMPA/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Memória Espacial/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Córtex Entorrinal/efeitos dos fármacos , Expressão Gênica , Hipocampo/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Memória Espacial/fisiologia
13.
Mol Cell Neurosci ; 92: 67-81, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29953929

RESUMO

Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of ß-amyloid (Aß) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aß burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Placa Amiloide/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Hipóxia Celular , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
14.
Neuropharmacology ; 135: 100-112, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510187

RESUMO

Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. The overproduction of soluble amyloid ß protein (Aß) oligomers in the hippocampus is closely involved in impairments in cognitive function at the early stage of Alzheimer's disease (AD). Growing evidences show that RIN possesses neuroprotective effects against Aß-induced neurotoxicity. However, whether RIN can prevent soluble Aß1-42-induced impairments in spatial cognitive function and synaptic plasticity is still unclear. Using the combined methods of behavioral tests, immunofluorescence and electrophysiological recordings, we characterized the key neuroprotective properties of RIN and its possible cellular and molecular mechanisms against soluble Aß1-42-related impairments in rats. Our findings are as follows: (1) RIN efficiently rescued the soluble Aß1-42-induced spatial learning and memory deficits in the Morris water maze test and prevented soluble Aß1-42-induced suppression in long term potentiation (LTP) in the entorhinal cortex (EC)-dentate gyrus (DG) circuit. (2) Excessive activation of extrasynaptic GluN2B-NMDAR and subsequent Ca2+ overload contributed to the soluble Aß1-42-induced impairments in spatial cognitive function and synaptic plasticity. (3) RIN prevented Aß1-42-induced excessive activation of extrasynaptic NMDARs by reducing extrasynaptic NMDARs -mediated excitatory postsynaptic currents and down regulating GluN2B-NMDAR expression in the DG region, which inhibited Aß1-42-induced Ca2+ overload mediated by extrasynanptic NMDARs. The results suggest that RIN could be an effective therapeutic candidate for cognitive impairment in AD.


Assuntos
Transtornos da Memória/tratamento farmacológico , Oxindóis/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Aprendizagem Espacial/efeitos dos fármacos , Peptídeos beta-Amiloides/farmacologia , Animais , Giro Denteado/fisiologia , Regulação para Baixo/efeitos dos fármacos , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxindóis/uso terapêutico , Fragmentos de Peptídeos/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/biossíntese
15.
Nature ; 551(7679): 232-236, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120427

RESUMO

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


Assuntos
Eletrodos , Neurônios/fisiologia , Silício/metabolismo , Animais , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Feminino , Masculino , Camundongos , Movimento/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Ratos , Semicondutores , Vigília/fisiologia
16.
Int J Mol Sci ; 18(9)2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832554

RESUMO

Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺]O) were recorded in parallel with tissue pO2 and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO2 following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.


Assuntos
Potenciais de Ação , Córtex Entorrinal/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Ácido Láctico/metabolismo , Neocórtex/metabolismo , Animais , Córtex Entorrinal/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Humanos , Neocórtex/fisiopatologia , Potássio/metabolismo , Ratos , Ratos Wistar
17.
Nat Commun ; 8(1): 152, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751664

RESUMO

Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Plasticidade Neuronal/genética , Neurônios Aferentes/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animais , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , Dendritos/metabolismo , Córtex Entorrinal/metabolismo , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo
18.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28508034

RESUMO

The presubiculum (PrS) is part of an interconnected network of distributed brain regions where individual neurons signal the animals heading direction. PrS sends axons to medial entorhinal cortex (MEC), it is reciprocally connected with anterior thalamic nuclei (ATNs), and it sends feedback projections to the lateral mammillary nucleus (LMN), involved in generating the head direction signal. The intrinsic properties of projecting neurons will influence the pathway-specific transmission of activity. Here, we used projection-specific labeling of presubicular neurons to identify MEC-, LMN-, and ATN-projecting neurons in mice. MEC-projecting neurons located in superficial layers II/III were mostly regular spiking pyramidal neurons, and we also identified a Martinotti-type GABAergic neuron. The cell bodies of LMN-projecting neurons were located in a well-delimited area in the middle portion of the PrS, which corresponds to layer IV. The physiology of LMN projecting, pyramidal neurons stood out with a tendency to fire in bursts of action potentials (APs) with rapid onset. These properties may be uniquely adapted to reliably transmit visual landmark information with short latency to upstream LMN. Neurons projecting to ATN were located in layers V/VI, and they were mostly regular spiking pyramidal neurons. Unsupervised cluster analysis of intrinsic properties suggested distinct physiological features for the different categories of projection neurons, with some similarities between MEC- and ATN-projecting neurons. Projection-specific subpopulations may serve separate functions in the PrS and may be engaged differently in transmitting head direction related information.


Assuntos
Córtex Entorrinal/citologia , Corpos Mamilares/metabolismo , Vias Neurais/fisiologia , Tálamo/citologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Córtex Entorrinal/metabolismo , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Interneurônios/fisiologia , Lisina/análogos & derivados , Lisina/metabolismo , Corpos Mamilares/citologia , Camundongos , Camundongos Transgênicos , Células Piramidais/fisiologia , Tálamo/metabolismo
19.
Nature ; 543(7647): 719-722, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358077

RESUMO

During spatial navigation, neural activity in the hippocampus and the medial entorhinal cortex (MEC) is correlated to navigational variables such as location, head direction, speed, and proximity to boundaries. These activity patterns are thought to provide a map-like representation of physical space. However, the hippocampal-entorhinal circuit is involved not only in spatial navigation, but also in a variety of memory-guided behaviours. The relationship between this general function and the specialized spatial activity patterns is unclear. A conceptual framework reconciling these views is that spatial representation is just one example of a more general mechanism for encoding continuous, task-relevant variables. Here we tested this idea by recording from hippocampal and entorhinal neurons during a task that required rats to use a joystick to manipulate sound along a continuous frequency axis. We found neural representation of the entire behavioural task, including activity that formed discrete firing fields at particular sound frequencies. Neurons involved in this representation overlapped with the known spatial cell types in the circuit, such as place cells and grid cells. These results suggest that common circuit mechanisms in the hippocampal-entorhinal system are used to represent diverse behavioural tasks, possibly supporting cognitive processes beyond spatial navigation.


Assuntos
Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Som , Navegação Espacial/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Cognição/fisiologia , Células de Grade/fisiologia , Masculino , Modelos Neurológicos , Células de Lugar/fisiologia , Ratos , Ratos Long-Evans , Percepção Espacial/fisiologia
20.
Brain Struct Funct ; 222(6): 2727-2742, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28161726

RESUMO

Path integration is a navigation strategy that requires animals to integrate self-movements during exploration to determine their position in space. The medial entorhinal cortex (MEC) has been suggested to play a pivotal role in this process. Grid cells, head-direction cells, border cells as well as speed cells within the MEC collectively provide a dynamic representation of the animal position in space based on the integration of self-movements. All these cells are strongly modulated by theta oscillations, thus suggesting that theta rhythmicity in the MEC may be essential for integrating and coordinating self-movement information during navigation. In this study, we first show that excitotoxic MEC lesions, but not dorsal hippocampal lesions, impair the ability of rats to estimate linear distances based on self-movement information. Next, we report similar deficits following medial septum inactivation, which strongly impairs theta oscillations in the entorhinal-hippocampal circuits. Taken together, these findings demonstrate a major role of the MEC and MS in estimating distances to be traveled, and point to theta oscillations within the MEC as a neural mechanism responsible for the integration of information generated by linear self-displacements.


Assuntos
Comportamento Animal , Córtex Entorrinal/fisiopatologia , Hipotálamo/fisiopatologia , Locomoção , Percepção Espacial , Navegação Espacial , Processamento Espacial , Ritmo Teta , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Agonistas de Receptores de GABA-A/toxicidade , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Ácido Ibotênico/toxicidade , Locomoção/efeitos dos fármacos , Masculino , N-Metilaspartato/toxicidade , Ratos Long-Evans , Percepção Espacial/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Processamento Espacial/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA